7.3.1 Introduction
In 3G
system (including WCDMA and cdma2000), which is as a new generation mobile
communication system, multi-access mode has changed from TDMA/FDMA to
CDMA/FDMA. However, as far as the wireless signal is concerned, it’s still
facing the difficulties in making use of frequency resources efficiently and
decreasing network interferences and transforming electrical signals with the
utmost of efficiency.
A
antenna is a communication system bridge between a user terminal and a base
station control equipment, widely applying to cellular mobile communication
system. As the communication technology is developing, antennas will be on
progress consequentially. The mobile communication system in the seventies adopted
omnidirectional antennas or angle reflector antennas, for the reason that a few
carriers and base stations can meet the demands of few users in a mobile
communication system of a city. As the economy goes forward, the amount of
mobile terminals, whose demands can not be met by the old base stations, is
boosting so rapidly. Especially as the development of digital cellular
technology goes, new antennas are required to be configured to improve the
multi-path fading, site assignment and multi-channel network in metropolis.
Plate type antennas
are widely applying to 2G digital cellular system thanks to the features of low
section, light framework, easy setting and good electrical specifications. From
the middle 80’s to the late 90’s, vertical polarization (VP) antennas are
usually adopted. A cell is usually divided into 3 sectors, each of which
demands 3 antennas, so 9 antennas should be set in a cell. However, too many
antennas will result in many problems, such as high setting cost. In addition,
the optimum diversity reception gains are unable to be achieved with diversity
reception antennas set, saying nothing of that the antennas are unable to be
set in some base stations. In that case, the technology of dual polarized
antennas emerges as the times require.
In 3G
phase, as the wireless technology grows and the signal detection varies, the
cellular network should be adjusted and optimized, which demands new base
station antennas, such as self-adapting control antenna and intellectualized
antenna.
7.3.2 3G
Network Structure
For 3G (WCDMA), the channels per carrier are
decided together by OVSF code and scrambling code, so capacity of the channels
per carrier is great. You should set the number of the carriers and traffic
channels in each base station based on the requirements of practical traffic
distribution in engineering design.
When
implementing multi-carrier, you should pay attention to the followings in
designing radio network:
1)
Optimize hard handover to
minimize the possibility of call drops.
2)
Avoid isolated multi-carrier
base station and implement multi-carrier in central cells to avoid hard handover.
3)
Avoid heavy-traffic cells of
being edge cells where hard handover occurs.
7.3.3 3G Radio
Network Typical Antennas
You have
several options to choose 3G typical antenna base on the following principles:
1) Properly choosing half-power beam width and gain of antenna based on
the number of base station sectors, traffic density and coverage requirements.
2) Adopting duplexer to save antenna locations.
3) Adopting dual polarization antennas in the dense urban areas.
The
adjustment of antenna direction is the same as that in 2G engineering. The main lobe direction and
angle of tilt of the directional antennas should be properly adjusted to the
traffic distribution and communication quality requirements. When setting
antennas, you should note that the isolation between antennas should meet the
requirements of horizontal and vertical isolation to avoid interference. The
setting height of antenna is up to the coverage. Therefore, it should be
properly considered according to the coverage, interference, isolation and
future development requirements.
The
antennas used in 3G network are similar to those used in 2G network, whose
requirements are as follows:
Sector
antenna gain: 13-16 dBd
Omnidirectional
antenna gain: 9-10 dBd
Sector
antenna half-power beam width: 60-65 degrees or 90 degrees
Omnidirectional
antenna deviation in roundness: < +/- 1 dB
Voltage standing wave ratio (VSWR):
<1 .5="" o:p="">1>
Impedance:
50 ohm (unbalanced type)
Antenna diversity: Space
diversity or polarization diversity is taken as standard configurations.
7.3.4 3G
Smart Antenna (SA)
1. Principles of SA
By
adopting SDMA that signals differ in the direction of transmission path, SA
reduces the effects of time delay spread, Rayleigh fading, multi-path, channel
interference, distinguishes the signals from the same frequency and timeslot,
and combines with other multiple access technologies to maximize the use of
frequency spectrum resources.
The SA
in base stations is a kind of array antenna comprising multiple antenna cells.
By adjusting the weight scope and phase of each signal and changing array
pattern, it can cancel interferences and increase S/N. In addition, it can
measure a user’s direction so that a beam is directed to the user.
The array antenna is composed of N antenna units, each of which has a corresponding weigher, totaling M groups of weighers and forming beams in M directions. M indicates the number of users, which can be greater than the number of antenna units. The dimension of array antenna and the number of antenna units decide the maximum gain and the minimum beam width, which means that the dimension of array antenna and antenna gain should keep balance with the antenna side lobe performance. By adjusting the signal phase and amplitude received from each antenna, SA combines them to a desired beam. This is called beam forming, which can form all kinds of beams, such as scanning beam, multi-beam, shaped beam and the beam with zero position controlled. According to the pattern, there are two types of SA: self-adapting pattern and shaped pattern.
The key
technology of SA is to identify the signal angle of arrival (AOA) and the
implement of digit-shaped. The algorithms to identify the signal AOA are MUSIC
algorithm, ESPRIT algorithm, maximum likelihood algorithm, etc. The
implementation of digit-shaped is to choose the optimum weight coefficient to
get the optimum beam. For self-adapting algorithm, the first step is to set
rules, which commonly are maximum likelihood, maximum S/N, minimum mean square
error (MMSE), minimum square error. You should choose one of them according to
the specific conditions.
2. Applications of SA in 3G
The
application example of SA in 2G network indicates that SA can efficiently
prevent from interference. According to the 3G criteria, the SA application is
required to improve the network capacity and performance, and take the
technical factors, such as “converged beam”, “self-adapting beam forming” and
“beam handover”, into consideration.
“Converged
beam” is applied to special areas, aiming at enlarging coverage and increasing
capacity. Such beam does not associate with a user, nor does it trace mobile users
in the coverage. However, by increasing link scope and converging beams, it can
reduce transmission power of mobile users and according increase capacity. If
mobile user enters the area with great transmission attenuation, the converged
beam will point to the mobile user and rest on him. If a mobile user enters the
area with good coverage which converged beams become unnecessary, the mobile
user will be in the charge of common pilot channel.
“Self-adapting
beam forming”, applying to downlink, is in favor of link budget for individual
user and a group of users to improve the system performance. In poor
transmission conditions, such as cell edge (basement), the coverage is required
to be spread to users with an aim to improve link scope.
“Beam
handover system” can switch users between narrow beams to form narrow sectors
without handover loss. Because the capacity in 3G system increases as the number of sectors
increases, four 30-degree beams coverage can substitute one 120-degree one,
resulting in increasing capacity by 2 to 4 times. Users are switched between
beams without the requirement of any special auxiliary channel.
There are several
options to apply SA in 3G. Beam handover SA is an option in starting phase. In
network design, SA can reduce the external network interference (such as one
frequency interference, adjacent frequency interference and other-system
interference) and the internal network interference as well. The order of
magnitude depends on the amount of beams.
Комментариев нет:
Отправить комментарий